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Abstract

An analytical expression for the error associated with estimating the axial ratio (Rs) and orientation (fs) of the finite strain ellipse with the

mean radial length method of strain analysis is presented. Analytical errors are computationally efficient and compare excellently with errors

calculated by the computationally intensive bootstrap approach.
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1. Introduction

Recently, Mulchrone et al. (2003) introduced another

method for strain analysis using the mean radial length

(MRL) of strain markers. The method is similar to previous

methods such as those by Shimamoto and Ikeda (1976) and

Wheeler (1984), all of which are mathematical expressions

of the original idea by Ramsay (1967, pp. 216–221). Along

with a plethora of other methods, Mulchrone and Roy

Choudhury (2004) have demonstrated that MRL can be

applied to populations of objects of any shape, thus ensuring

the broad applicability of MRL. This result is contingent on

fitting ellipses to marker objects using methods incorporat-

ing the moment data of the object shape. Mulchrone et al.

(2003) estimated the error associated with MRL by applying

the versatile, but computationally intensive bootstrap

method (Efron, 1979). In order to reduce the computational

overhead and complexity of implementation associated with

the bootstrap approach to error analysis, an analytical

expression for the error associated with the MRL method is

derived below. Although computational overhead may no

longer be a significant issue, an analytical solution is

certainly easier to implement for structural geologists

without programming skills. A comparison is made between
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errors calculated with the expression derived here and the

bootstrap for a set of natural data. The method of derivation

is general enough to be applied to other areas of structural

geology and is therefore of general interest.
2. Error analysis

MRL was derived by Mulchrone et al. (2003) by

assuming that the initial orientations of the long axes are

from a uniform distribution and that the distribution of

initial axial ratios is axially symmetric. The method is based

on the conceptually simple fact that averaging the

parameters of an initial ellipse distribution (i.e. the

unstrained state) defines a circle, so that in the strained

state the averaged parameters define an ellipse, namely the

strain ellipse. For each ellipse, where the ith ellipse has axial

ratio Ri and orientation fi, the following values are

calculated
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and subsequently the following weighted means may be

determined
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where n is the number of marker objects. Note that this

expression differs from that given in Mulchrone and Roy

Choudhury (2004) because they assumed that
Pn

iZ1 wiZ1,

whereas here a more general form is used. Note that setting

wiZ1 for all i results in the original expressions derived by

Mulchrone et al. (2003). The strain ellipse parameters (axial

ratio Rs and orientation fs) can then be calculated as

follows:
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To derive analytical expressions for the errors associated

with fs and Rs, expressions are required for the weighted

variance of the weighted means in Eqs. (3)–(5). It is

important to note that the weighted variance of the weighted

mean is sought and not the weighted variance of the

population, hence the following expressions have been

divided by n (see for example Devore (1995, p. 230)). The

variances s2qs , s
2
ts
and s2us for qs, ts and us, respectively, are

given by (Bevington, 1969, p. 73)
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and can be readily calculated.

An estimate for the error of fs and Rs is obtained using a

Taylor series expansion for the variance (Hahn and Shapiro,

1967, pp. 230–232; Bevington and Robinson, 1992, pp. 41–

43). In general, suppose there is a function f of estimated

parameters (p1, p2,.) with known variances ðs2p1 ;s
2
p2
;.Þ

such that

zZ f ðp1; p2;.Þ (11)

it can be shown by taking the Taylor series approximation to

f at the parameter means ð �p1; �p2;.Þ that the variance of z is

approximated by
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where s2z is the variance of z. It is worth noting that higher

order terms have been omitted, although this is usually

considered to be a reasonable approximation in most cases.

In any case, the validity of this approximation for the MRL

is cross-checked using an independent bootstrap estimation.

Taking the formulas for fs and Rs above, and substituting

the value for fs from Eq. (6) into Eq. (7), and for

conciseness let
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There are two cases to be considered when applying Eq.

(14) and deriving expressions for error. The values of both

qs and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C ðu2s =t

2
s Þ

p
are always positive, therefore if tsR0,

Eq. (14) must be used as shown, otherwise if ts!0, the

reciprocal of Eq. (14) must be used to ensure that RsO1 in

every case.

From Eq. (12), the estimated variance associated with fs

(i.e. ŝ2fs
) is:
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Calculating ŝ2Rs
, the variance of Rs, is slightly more

involved because depending on the sign of ts a different

equation is used. Therefore:
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However, from application to natural and randomly

generated data, it has been found (see Section 3) that higher

order terms need to be included in the estimation of ŝ2Rs
for

satisfactory results. Eq. (12) with higher order terms

included is given by (Bevington and Robinson, 1992,

pp. 41–43)
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Fig. 1. Results of simulation study to compare analytical and bootstrap errors. Variation of error with increasing applied strain for (a) lower error bound on Rs

and (b) upper error bound on Rs calculated using the low-order expressions (Eqs. (16) and (17)); (c) lower error bound on Rs and (d) upper error bound on Rs

calculated using the high-order expressions (Eqs. (19) and (20)); (e) lower error bound on fs and (f) upper error bound on fs.
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so that the variance of Rs is given by
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if ts!0, where s2tsqs is the covariance of ts and qs, and s2usqs ,

s2usts are similarly defined. These quantities can be



Fig. 2. Frequency distribution of the finite strain axial ratios of the natural data.
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calculated as follows:
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The 100(1Ka)% confidence interval for each parameter

is then given by
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where ta=2;nKp is the Student’s t-test statistic, n is the

number of data and p is the number of parameters (i.e.

2 in the present case). For large data sets (usually nO
30; see Devore, 1995, p. 293), the Student’s t-test can

be replaced by the standard normal (represented by

za=2), which at the 95% confidence level has a value of

approximately 1.96. Meere and Mulchrone (2003)

demonstrate that data sets with nz150 are a minimum

for strain analysis, so that the normal approximation is

perfectly valid for these cases.
3. Comparison with bootstrap

In order to validate the above approach, a comparison

was made between bootstrap errors calculated at the 95%
confidence interval and those calculated using the analytical

method derived above for both computer-generated and

natural data. Datasets containing 150 data each were

generated by randomly selecting an axial ratio between 1

and 10 and a long axis orientation between 0 and 1808 using

a uniform distribution (see Mulchrone et al., 2003; Meere

and Mulchrone, 2003 for further details). Each random

dataset was strained to a known finite strain ranging from

1.0 to 10 in 0.1 steps and an estimate of fs and Rs was

obtained, as well as an estimate of the associated errors

using the analytical approach derived above and the

bootstrap. Results are presented in Fig. 1. It is clear that

the lower order approximation for errors associated with Rs

(i.e. Eqs. (16) and (17)) breaks down for applied finite

strains greater than around 2.0 (see Fig. 1a and b). By

contrast, the higher order approximation works well up to

applied finite strains of at least 10.0 and is the recommended

method. The lower order approximation for errors associ-

ated with fs closely match with those calculated by the

bootstrap and therefore the lower order approximation is

recommended in this case.

Quartz clast shape data was collected from 68 thin

sections of 23 sandstone samples from the Variscides of

southwest Ireland (Meere, 1995). Three sections were

examined per sample cut parallel to the fabric, perpendicu-

lar to the regional fold axes and parallel to the fold axes, but

perpendicular to the fabric. Fifty clasts were measured from

each thin section and re-analysed using MRL. Although 50

measurements are below the level (150) recommended by

Meere and Mulchrone (2003) this just means that the

confidence intervals are larger than ideal. Three samples of

sandstone, oolite and conglomerate, each providing 150

measurements, were also analysed. The natural samples

represent a variety of strain conditions from low to medium



Fig. 3. Plot of bootstrap errors versus analytical errors associated with estimation of (a) Rs with the low-order formula (Eqs. (16) and (17)), (b) Rs with the

high-order formula (Eqs. (19) and (20)) and (c) fs.
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Table 1

Detailed results of analysis of natural data

Sample Lithology n Bootstrap Analytical

Rsl Rscalc Rsu Phil Phicalc Phiu Rsl Rscalc Rsu Phil Phicalc Phiu

10AB Sandstone 50 1.24 1.35 1.50 K9.99 K1.52 6.53 1.21 1.35 1.49 K9.56 K1.52 6.52

10AC Sandstone 50 1.41 1.55 1.70 K5.13 K0.29 4.77 1.40 1.55 1.69 K5.31 K0.29 4.73

10BC Sandstone 50 1.05 1.14 1.25 K89.44 85.16 89.28 1.04 1.14 1.24 69.00 85.16 101.31

11AB Sandstone 50 1.29 1.44 1.63 3.91 12.07 18.99 1.26 1.44 1.62 3.89 12.07 20.24

11AC Sandstone 50 1.44 1.60 1.82 K12.11 K5.67 K0.28 1.40 1.60 1.79 K11.46 K5.67 0.11

11BC Sandstone 50 1.02 1.10 1.23 K71.35 56.61 80.66 1.01 1.10 1.20 28.51 56.61 84.71

12AB Sandstone 50 1.07 1.17 1.31 K0.07 16.58 37.16 1.04 1.17 1.30 K1.17 16.58 34.33

12AC Sandstone 50 1.57 1.73 1.92 K7.42 K1.26 5.53 1.56 1.73 1.90 K8.03 K1.26 5.50

12BC Sandstone 49 1.04 1.12 1.24 26.74 55.23 76.53 1.03 1.12 1.21 33.57 55.23 76.89

13AB Sandstone 50 1.18 1.28 1.42 45.38 56.28 67.41 1.16 1.28 1.41 45.67 56.28 66.90

13AC Sandstone 50 1.02 1.07 1.22 K85.78 K56.93 85.49 1.07 1.07 1.21 K108.89 K56.93 K4.96

13BC Sandstone 51 1.10 1.19 1.33 44.99 65.14 83.34 1.07 1.19 1.30 46.93 65.14 83.35

14AB Sandstone 49 1.13 1.27 1.40 K6.51 5.70 19.92 1.13 1.27 1.41 K5.87 5.70 17.27

14AC Sandstone 51 1.28 1.40 1.58 K13.36 K4.42 4.73 1.24 1.40 1.56 K13.95 K4.42 5.11

14BC Sandstone 50 1.04 1.09 1.18 3.47 34.43 64.27 1.00 1.09 1.17 K1.52 34.43 70.38

15AB Sandstone 50 1.39 1.53 1.71 K2.97 3.09 8.68 1.37 1.53 1.69 K2.86 3.09 9.03

15AC Sandstone 51 1.30 1.43 1.61 K25.10 K16.16 K6.11 1.26 1.43 1.59 K25.42 K16.16 K6.91

15BC Sandstone 50 1.02 1.08 1.20 K52.16 K3.14 49.12 1.03 1.08 1.18 K41.18 K3.14 34.90

16AB Sandstone 50 1.12 1.20 1.34 K20.12 K7.49 5.64 1.10 1.20 1.30 K21.88 K7.49 6.89

16AC Sandstone 51 1.08 1.17 1.27 K77.30 K61.78 K42.08 1.06 1.17 1.28 K78.18 K61.78 K45.38

16BC Sandstone 51 1.16 1.24 1.35 K20.63 K9.94 K1.13 1.14 1.24 1.34 K19.56 K9.94 K0.32

17AB Sandstone 50 1.41 1.53 1.69 K14.66 K8.33 K2.36 1.39 1.53 1.67 K14.50 K8.33 K2.17

17AC Sandstone 50 1.21 1.33 1.47 K1.21 10.37 21.75 1.20 1.33 1.47 K0.92 10.37 21.65

17BC Sandstone 50 1.26 1.35 1.51 1.33 10.16 17.53 1.22 1.35 1.48 1.35 10.16 18.97

18AB Sandstone 50 1.09 1.24 1.40 2.05 16.76 38.44 1.07 1.24 1.42 1.50 16.76 32.02

18AC Sandstone 51 1.15 1.28 1.44 K31.89 K17.38 K0.46 1.13 1.28 1.43 K32.16 K17.38 K2.61

18BC Sandstone 50 1.02 1.07 1.20 K62.69 K9.46 48.71 1.03 1.07 1.18 K58.16 K9.46 39.23

19AB Sandstone 50 1.46 1.58 1.75 K7.70 K0.87 4.91 1.44 1.58 1.72 K7.25 K0.87 5.51

19AC Sandstone 50 1.19 1.30 1.41 K6.61 4.60 16.18 1.19 1.30 1.41 K7.19 4.60 16.39

19BC Sandstone 49 1.06 1.15 1.27 K9.15 14.95 33.86 1.04 1.15 1.25 K6.36 14.95 36.26

1AB Sandstone 50 1.03 1.10 1.23 K14.81 19.34 51.15 1.00 1.10 1.21 K8.44 19.34 47.12

1AC Sandstone 50 1.20 1.35 1.52 K4.16 6.52 16.08 1.18 1.35 1.52 K3.33 6.52 16.37

1BC Sandstone 50 1.04 1.13 1.27 K33.81 K0.45 29.19 1.00 1.13 1.25 K27.62 K0.45 26.73

20AB Sandstone 51 1.41 1.59 1.76 K14.26 K7.62 K0.57 1.41 1.59 1.77 K14.35 K7.62 K0.88

20AC Sandstone 50 1.26 1.37 1.54 K12.91 K2.20 9.29 1.23 1.37 1.52 K13.13 K2.20 8.73

20BC Sandstone 52 1.07 1.16 1.28 K33.08 K12.46 5.37 1.05 1.16 1.27 K29.75 K12.46 4.84

21AB Sandstone 49 1.23 1.35 1.51 K10.61 K3.05 4.22 1.21 1.35 1.49 K10.26 K3.05 4.17

21AC Sandstone 50 1.22 1.32 1.45 K9.05 0.13 10.33 1.20 1.32 1.44 K9.21 0.13 9.46

21BC Sandstone 50 1.22 1.32 1.46 K6.63 2.40 11.52 1.20 1.32 1.44 K6.48 2.40 11.28

22AB Sandstone 50 1.34 1.45 1.61 18.16 25.27 32.23 1.31 1.45 1.59 17.88 25.27 32.66

22AC Sandstone 50 1.07 1.18 1.34 K38.90 K17.90 K0.93 1.06 1.18 1.30 K35.50 K17.90 K0.29

22BC Sandstone 49 1.06 1.16 1.29 6.27 22.49 43.78 1.05 1.16 1.27 5.53 22.49 39.46

23AB Sandstone 50 1.26 1.39 1.56 0.44 9.24 17.43 1.24 1.39 1.54 0.20 9.24 18.28

23AC Sandstone 50 1.35 1.47 1.64 K4.10 3.29 11.09 1.32 1.47 1.63 K4.46 3.29 11.04

(continued on next page)

K
.F
.
M
u
lch

ro
n
e
/
Jo
u
rn
a
l
o
f
S
tru

ctu
ra
l
G
eo
lo
g
y
2
7
(2
0
0
5
)
1
6
5
8
–
1
6
6
5

1
6
6
3



Table 1 (continued)

Sample Lithology n Bootstrap Analytical

Rsl Rscalc Rsu Phil Phicalc Phiu Rsl Rscalc Rsu Phil Phicalc Phiu

23BC Sandstone 49 1.33 1.44 1.62 K12.56 K6.28 1.71 1.29 1.44 1.59 K13.53 K6.28 0.97

2AB Sandstone 50 1.47 1.59 1.76 K0.29 4.85 9.02 1.44 1.59 1.75 K0.01 4.85 9.71

2AC Sandstone 50 1.28 1.40 1.56 K15.35 K7.11 2.23 1.27 1.40 1.52 K16.78 K7.11 2.56

2BC Sandstone 50 1.03 1.07 1.19 K87.19 60.03 87.34 1.01 1.07 1.15 16.98 60.03 103.09

3AB Sandstone 55 1.15 1.33 1.53 K4.69 6.14 15.66 1.14 1.33 1.51 K3.47 6.14 15.74

3AC Sandstone 50 1.23 1.36 1.54 K5.64 3.50 12.82 1.20 1.36 1.51 K5.77 3.50 12.78

3BC Sandstone 49 1.01 1.01 1.16 K86.09 K56.06 86.01 1.12 1.01 1.12 K577.36 K56.06 465.24

4AB Sandstone 50 1.92 2.11 2.34 K31.74 K27.93 K23.47 1.73 2.11 2.48 K32.29 K27.93 K23.58

4AC Sandstone 50 1.52 1.74 1.96 K7.91 K2.55 2.66 1.53 1.74 1.94 K7.88 K2.55 2.77

4BC Sandstone 50 1.07 1.15 1.28 25.74 55.34 71.78 1.06 1.15 1.23 32.12 55.34 78.56

5AB Sandstone 50 1.55 1.69 1.88 K7.84 K3.38 1.95 1.54 1.69 1.84 K8.67 K3.38 1.91

5AC Sandstone 50 1.26 1.47 1.67 K7.66 0.32 10.59 1.26 1.47 1.67 K7.70 0.32 8.34

5BC Sandstone 50 1.02 1.07 1.19 K87.95 K72.10 88.16 1.04 1.07 1.18 K110.21 K72.10 K34.00

6AB Sandstone 50 1.58 1.81 2.00 K1.89 3.49 6.98 1.59 1.81 2.03 K1.30 3.49 8.29

6AC Sandstone 50 1.87 2.01 2.23 K2.16 2.65 7.40 1.83 2.01 2.20 K2.42 2.65 7.73

6BC Sandstone 50 1.13 1.18 1.27 38.13 53.93 66.95 1.12 1.18 1.25 38.62 53.93 69.24

7AB Sandstone 50 1.06 1.17 1.32 K62.54 K39.05 K12.31 1.03 1.17 1.32 K58.66 K39.05 K19.45

7AC Sandstone 50 1.11 1.24 1.40 20.22 34.05 53.84 1.09 1.24 1.39 16.56 34.05 51.54

7BC Sandstone 50 1.21 1.30 1.43 K18.01 K6.60 3.08 1.19 1.30 1.41 K16.98 K6.60 3.78

8AB Sandstone 50 1.71 1.91 2.16 K5.94 0.05 3.91 1.69 1.91 2.14 K5.39 0.05 5.50

8AC Sandstone 54 1.12 1.27 1.46 5.74 28.51 40.14 1.09 1.27 1.46 14.08 28.51 42.95

8BC Sandstone 50 1.28 1.40 1.55 K12.16 K3.62 4.91 1.26 1.40 1.54 K12.10 K3.62 4.87

9AB Sandstone 52 1.53 1.67 1.88 2.20 7.18 13.44 1.48 1.67 1.86 1.36 7.18 12.99

9AC Sandstone 50 1.39 1.56 1.74 K10.73 K4.08 4.30 1.38 1.56 1.74 K11.30 K4.08 3.15

9BC Sandstone 50 1.09 1.17 1.28 K16.89 2.17 17.49 1.07 1.17 1.27 K13.84 2.17 18.19

oolite Oolite 158 1.62 1.68 1.73 45.57 47.84 50.17 1.62 1.68 1.74 45.65 47.84 50.04

sst Sandstone 151 1.51 1.61 1.71 K10.29 K6.09 K2.93 1.51 1.61 1.71 K9.76 K6.09 K2.42

conglom Comglomerate 138 1.98 2.09 2.21 5.15 7.45 9.82 1.97 2.09 2.20 5.11 7.45 9.80

n is the number of data, Rsl is the lower bound on Rs, Rscalc is the calculated value of Rs, Rsu is the upper bound on Rs, phil is the lower bound on fs, phicalc is the calculated value of fs and phiu is the upper

bound on fs.
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(i.e. RsZ1.0–2.2, see Fig. 2). The results are presented in

Fig. 3 and Table 1. There is a striking correlation between

the bootstrap and analytical errors for both Rs and fs,

illustrating that both methods produce almost identical error

bounds except that the analytical method is a lot less

computationally expensive and easier to implement. Note

that there is a slight underestimation of the lower error

bound evident in Fig. 3a for the low-order analytical method

(i.e. using Eqs. (16) and (17)). This is to be expected in the

light of the simulation results presented above. It is clear

that the higher order error approximation (i.e. using Eqs.

(19) and (20)) gives a much better correlation, as predicted

by the simulation. In the case of the errors for fs there are

three outliers departing from the general pattern. This can be

readily explained by low finite strain values measured for

these samples. At low finite strains, a large spread of

possible values for fs are produced by the bootstrap

calculations so that the bootstrap records an error interval

from approximately K90 to 908 independent of the

calculated value of fs.
4. Conclusions

An analytical expression for the error associated with

estimating Rs and fs with the MRL method (Mulchrone

et al., 2003) has been presented. Analytical errors are

computationally efficient and compare excellently with

errors calculated by the computationally intensive bootstrap

approach.
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